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Abstract

The equilibrium shape of idands has been determined with high accuracy as a function of temperature
for Cu(100), Cu(111) and Ag(111)-surfaces. The equilibrium shape is andyzed using the inverse
Wulff-congtruction, the I1sng-modd, and two novel methods concerning the minimum curvature and
the aspect ratio of idands. From the conventiond inverse Wulff-congtruction, the angle dependence
of the step free energy is obtained. On Cu(111) and Ag(111), the energies of A- and B-type steps
differ only by about 1%. The andysis of the data usng the andytical form of the equilibrium shape
provided by the Isng-modd yields quite acceptable vaues for the kink energy on (111)-surfaces,
but not on the (100)-surface. It is shown that the reason for the fallure is due to the different ratio of
kink and step energies assumed in the Isng-modd for the two surfaces. By combining well-known
relations on the datistical mechanics of steps and idands, a smple reation between the kink energy
and the minimum curvature of the equilibrium shape is derived and the experimenta data are
andyzed accordingly for the kink energies on al surfaces. On the Cu(100)-surface, the kink energy
compares well with an earlier independent experimenta result. The temperature dependence of the
free energy of the 100% kinked step in (100)- and (111)-idands is caculated theoreticaly using
generd principles. The theory is used to determine the absolute values of the step energies from the
experimenta data.



1. Introduction
Partly because of their esthetic apped, partly because of intellectua challenge, researchers have been

fascinated by the equilibrium and growth shapes of single crystds for many decades. The large
vaiety of these shapes, as well as thar regularity originate from the anisotropy of single crysas,
which is directly reflected in the equilibrium shape [1]. Since the surface free energy is a unique
function of orientation and temperature, a particular crystd has one and only one equilibrium shape a
a given temperature. For many years, sudies on the equilibrium shape have been a playground for
datigticd physcs [2-8]. On the experimenta sde, studies of crysta equilibrium shapes require a
complete control of the growth environment as smdlest amounts of impurities may have a dramétic
effect on the shgpe. Because of this difficulty, rdiable studies on the equilibrium shape became
avalable only reaivey recently [9-16]. It is even more recently that we begin to develop an
atomigtic understanding of the orientation dependence of the free energies as more and more studies
focus directly on the atomic aspects of surfaces, be it in the form of first principles totd energy
cdculations or in form of atomicdly resolved experimentd studies employing, e g., the scanning

tunneling microscope (STM).

The surface free energy is determined by the energy of the various crystd facets, the energies of
steps and kinks on these facets, and the interaction energy between steps and kinks. Step-step
interactions can be sudied experimentaly by observing the terrace width digtribution on vicind
surfaces (see, e. g., [17-20]). The interactions arise from entropic repulsion [4, 21], direct eadtic
interactions [22], indirect vibrationd interactions [23], and possibly dectronic interactions [24]. The
smdlness of the energies involved and the complexity of the interplay [25] between the various

contributions makes the andysis of sep interactions extremey difficult (see e. g. [20]).
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Wdl edtablished is the determination of the relaive facet energies from experimental data on the

equilibrium crysd shepe [10, 11, 26, 27]. Likewise well edtablished is the experimenta

determination of kink energies, mostly from studies of (patia) step equilibrium fluctuations [28-31].

The experimental determination of step energiesis less well developed. The dependence of the step
free energy on orientation is obtained from the equilibrium shape of two-dimensona idands on
surfaces using an inverse Wulff-congruction. An eegant method to determine the absolute vaue of
the mean step energy of an idand from its equilibrium shape fluctuations was recently proposed by
Schlofer et d. [32]. Another method to determine step energies based on the andysis of the three-

dimensiond equilibrium shape of crygdlites[27] Hill hasto face an experimentd test.

Equilibrium structures of 2D-idands have been observed by many researchers. Neverthdess little in
terms of quantitative studies is avalable. In 1994, Bartelt et d. investigated the shape of idands on
Si(100) in connection with step fluctuations and derived the step energy and step line tension by
making a very cever use of the anisotropy of the Si(100)-surface due to the pairing-row
recongtruction [33]. The ratio of the free energies per step length b of the A- and B-type steps on
the Pt(111) surface was determined from distances of the corresponding steps to the center of the
equilibrium shape by Michely and Comsa [34]. Despite the fact that both step types are oriented
aong the direction of dense packing (however, displaying a (100)- and a (111)-face, respectively),
the ratio of the free energies deviates sgnificantly from 1 pa/bg = 1.15 a 760 K). The same
andysis for Cu(111) and Ag(111) as presented here shows hardly any deviation from 1 (see aso

[35, 36]).

Asde from these, and possibly a few more scattered observations, no systematic analysis of the
equilibrium shape of 2D-idands has been reported. It is the purpose of this paper to fill thisgap by a
detailed experimental study of the equilibrium shape on Cu(100)-, Cu(111)-, Ag(111)-surfaces in a

relatively wide temperature range. The data is andyzed, first by usng the wel-known inverse Wulff-
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construction to obtain the orientation dependence of the step free energy. We then proceed to more

sophisticated means of analyss by making contact to concepts and results of the tatistical mechanics
of 2D-objects. We show how to use the minimum curvature of the equilibrium shape (in the
orientation of dense packing) to determine the kink energy. Secondly, we show how the absolute
vaue of the step energy for steps adong the direction of dense packing (and thus for dl other
orientations by means of the inverse Wulff-congtruction) can be determined from a particular aspect

ratio of the idands as afunction of temperature.

The paper is organized as follows. In the next section, experiments and the procedures for the
extraction of the equilibrium shape from the STM images are described. The results are analyzed
using the inverse Wulff-congtruction in section 3. In section 4, we make contact to the Ising-model
and discuss the fit of the observed equilibrium shapes to this model. In the two sections to follow, the
theoretica background for the further analysis is provided, and the theory is applied to the data to
obtain kink and step energies in section 7. The various methods for the analyss of the data and

comparison to other methods as well as to theoretical results are discussed in section 8.

2. Experimental

The equilibrium shapes of idands were determined usng an STM based on the origind design by
Besocke and Frohn [37, 38]. Improved therma and mechanica stability was achieved by usng a
ceramic base plate for the support of the piezo actuators. The sample temperature was varied by
radiation from afilament, electron beam asssted if necessary. The UHV chamber was equipped with
an dectron beam evaporator (Omicron EFM3) for copper and silver deposition. Specid care was
taken to degas the evaporator and the CuW/Ag containing crucible so that during depostion the

pressure in the chamber never exceeded 1x10™*°mbar. The single crystals used in this experiment
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were cut by spark erosion and polished mechanicaly to an accuracy of 0.1°. Ther impurity content

was leached by hesting in a 1:25 hydrogen and argon atmosphere at 800°C for severd hours prior
to mounting in the UHV chamber. In order to be able to distinguish between A- and B-geps, the
(111)-samples were mounted with reference to the azimutha orientation as established with the help
of Laue diffraction patterns. While for Cu no further trestment is necessary prior to bakeout of the
chamber, the Ag crystd was sputtered with Ar*  for about 2h to remove the (@0 mm thick)
polycrysdline top layer. After bakeout, the find sample preparation was performed by repested
cydesof souttering with Ne™ a 1 kV for 10 minutes (5 mA ion current) with successive annediing of
Cu-samples at 700°C and of the Ag-samples at 480 °C for another 20 minutes. After a few cycles,
no contamination was detectable in the Auger spectrum. Since the idand equilibrium shape is rather
sengtive to contamination, a surface coverage below the detection limit of Auger spectroscopy may
dill have a non-negligible influence on the measurements. We therefore continued the cleaning
procedure many cycles beyond the point at which we found the sample clean by Auger standards. In
the fina cycle before the measurement, the annealing temperature was reduced to 400°C in the case
of the Cu-samples to avoid further segregation of bulk impurities (sulfur) onto the surface. The find
date of the surface after the preparation procedure was controlled by means of the STM images.
After preparation, the observed surface density of pinning sitesin the STM imageswas 10 per area
of an atom. The surface remained clean even after 5-8 hours of observation. The mean terrace width
of the surface was 0.5-1 um before deposition. After the find cycle, the sample was cooled down
dowly to the temperature a which Cu and Ag was deposited. The idand sze and dendty was
controlled by varying the deposition rate between 0.05 and 0.5 ML/s and the temperature of the
sample. After depogtion, the sample was radiaively heated to the desred temperature and
smultaneousdy mounted to the microscope. The sample was in thermad equilibrium and the tip in a

gable tunneling condition for STM recording usudly within 5 minutes after deposition. Typica scan
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parameters were 1.2 nA, - 1.0 V, and a scan speed of 30-60 seconds per 512x512 pixel image.

Since no measurable influence on equilibrium step fluctuations was found on Cu(111)- and Ag(111)-
surfaces usng Smilar tunnding parameters [39, 40], the tip-surface interactions are negligible in the

experiments reported here.

It should be noted that on meta surfaces idands display their equilibrium shagpe even during epitaxia
deposition due to the easier mass transport along step edges compared to the interlayer or intraayer
meass trangport, provided that the deposition rate is sufficiently low and the temperature sufficiently
high. Idands dso digplay their equilibrium shape during coarsening processes. For most of the time,
this is even true if the coarsening is due to codescence. After a coaescence event, the equilibrium

shapeis quickly re-established via diffusion dong the periphery [39, 41].

Examples for the images of idands on the Cu(111)- and Cu(100)-surface are shown in Fig. 1. The
figures represent excerpts from the 512x512 origina images. The shadows in the image are caused
by a high pass filter in the control circuit. The STM images of the idands were andyzed using a
speciad purpose computer code which was implemented as a macro in the image processng
software. Starting from a point marked near the center of the idand, the program searches dong a
radid linein adirection q for the sudden jump in the gray scae vaues which represent the radia
posgtion of the perimeter ry(g). The procedure is repested for 360 equaly distributed angular
directions g. Unphysicaly large jumps in the radia podtion of the idand perimeter due to occasiond
noise are filtered out by limiting the difference between the radii corresponding to adjacent values of
g. The idand edge positions so obtained are then displayed in the STM image for visua control, a

possible change of search parameters and a renewed search.

On the metd surfaces invedtigated in this study, the idand shapes continuoudy fluctuate due to

stochadtic noise in the mass flux aong the idand perimeter. Averaging over large
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AQ(111): 292K Cu(111): 286K Cu(100): 287K
200x200 Pixel 200x200 Pixel 150x150 Pixel

Ag(111): 406K Cu(111): 398K  Cu(100): 400K
200x200 Pixel 200x200 Pixel 100x100 Pixel

Fig.1: STM images of islands on the Ag(111), Cu(111)- and Cu(100)-surface at two different temperatures. The
images are excerpts from 512" 512 pixel images. The white bar in each image corresponds to a length of 20nm.
Several hundreds of such images from several different islands are averaged to obtain the equilibrium shapes

such asdisplayed in Fig. 2.

ensembles of idands is therefore necessary in order to obtain the equilibrium shape for each
temperature. A typical ensemble contained about 100-600 individua shapes, depending on the
idand sze. The individua idand shapes in the ensemble were usudly picked from severd idands in
an image and aso many images taken a consecutive times. We singled out the few idands which did
not fluctuate stochagticdly in their shape because of pinning centers a the step edge. Since the areas
of the different idands are different and also depend, though dowly, on time because of ripening, the
shapes were scaded to the same idand Sze prior to averaging. The averaged idand shapes were
corrected for asmall, but nevertheless noticeable distortion of the images due to the anisotropy of the

piezo actuators of the STM. The correction involved a generd linear transformation (including a
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rotation). The matrix eements were determined so that the idand shape was optimized with respect

to the intringc symmetry (C4, and Cs, for (100) and (111), respectively).

3. Reaults and inver se Wulff-construction

As examples for the experimenta results two equilibrium shapes of idands on the Cu(100)- and
Ag(111)-surface are shown in Fig. 2aand b. The pointsin Fig. 2 are actua data points and thereby
demondirate the low noise in the data, which is a prerequisite for the quantitative analysis to follow.
As expected, the idands appear more cornered a lower temperatures. The shape eventualy

becomes circular a high T. Idand shapes were investigated in the
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Fig. 2:(a) Two equilibrium shapes for islands on Cu(100) obtained by averaging over 650 and 450 islands,
respectively. Theradii ry- and r,s- are proportional to the free energiesby, and bys- since the tangents to the shape
are perpendicular to the radii in those two cases. The aspect ratio r,s/ry- i therefore equal to the ratio of the free
energy bys- of the 100% kinked step to the free energy of b of the step along the densely packed direction. (b)
Two equilibrium shapes for islands on Ag(111) obtained by averaging over 104 and 134 (comparatively large)
islands, respectively . The radii re =r, and rge = rg pointing to the A- and B-steps are proportional to the free
energies b, and bg. They differ by less than 1%. With the differenceinr, and rg being that small the length of the
radius pointing to q=30° is proportional to by, the free energy of the 100% kinked step.
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temperature range of 290K to 450K. The lower limit was because our system was lacking the

cgpability of active cooling. However, the principle limit set by the diffuson dong the idand perimeter
becoming too dow, is about at the same temperature for Cu and not significantly lower for Ag(111).
The high temperature limit set by increasing rapidity of coarsening processes. In Fg. 3ac,
equilibrium shapes for Cu(100), Cu(111) and Ag(11l) a two different temperatures each are
disolayed in the form of the radius from the center as a function of the angle g. The data sets are
selected S0 as to represent the correct mean ratio ra/rg and the mean aspect ratio. Here and in the
following, the angle q = O refers to the angle a which the perimeter corresponds to the densdly
packed &11ftdirection. For the (111)-surface, g = O denotes the direction where the idand
perimeter represents an A-step along a &11ftdirection. As seen from Fig. 3b and c, the radius r(0°)
is larger than the radius r(60°) corresponding to the direction of the B-step on Cu(111), while the
inverseistrue for Ag(111). The ratio of the radii ra/rg is equa to the ratio of the free energies (per
length) of the A- and B-steps. Hence, for Cu(111) the A-step has the larger energy. Note that
identification of steps as being of the A- or B-type is with reference to the Laue-orientation of the
sample. This assumes that the idands grow as to continue the fce-structure. For Ag(111), Mend et
a. reported that in haf the idands the atoms occupy hcp-sites [42]. In that case, A- and B-step
reverse the orientation. For Cu(111), Camarero et d. reported that about 20% of the idands are
faulted for room temperature deposition and that the ratio rises dowly with temperature [43]. In
order to look for stacking faults in our case, we have determined the ratio ra/rg from averages over
al images of individua idands. We have firgt looked for a possible temperature dependence of the
ratio, however found no gatistical significant dependence. The frequency for finding the ratio ra/rs in
particular ranges are displayed in Fig. 4a and 4b, for Cu(11l)and Ag(111), respectively. The

presence of faulted idands would giveriseto a
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respectively.
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Fig. 4: Hisogram for the frequency for finding a particular ratio of radii, (@) for Cu(111) and (b) for

Ag(111). The notion A,B here refers to the Laue orientation of the crysd. If idands grow with

-steps gppear in the orientation of B-steps, and

atomsin hcp pogtion rather than fcc positions the A

vice versa. Then, the ratio representing the ratio of the free energies of the two kinds of steps would

be inversed. For Cu(111) the data exclude an appreciable fraction of faulted idands (see text for

further discussion).
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double-peaked digtribution, centered symmetricaly around ra/rg = 1. Thisis not observed. In order

to andyze the higograms quantitatively we have fitted two gaussians centered at postions placed
symmetricaly around ra/rg = 1. Fitted are the postion of the centers, the reative weight and a
variance parameter. The ratio of the variances of the two gaussans are taken inversely proportiona
to the square root of the weight, in keeping with the principles of datigtics. For Cu(111), the
optimum fit is for a zero fraction of faulted idands,, p=0.0+£0.08 (solid line in Fig. 48). For the
purpose of illustration we aso show the optimum fit for an assumed fraction p = 0.5 as a dashed line.
The results show that we do not have a dgnificant fraction of faulted idands in the present
experiments. In a previoudy reported set of experiments in which idands were deposited on some
(accidentaly wider) terraces of aCu(21 21 23) vicind surface we found preferentidly idands with a
ratio ra/rg = 0.989 which is exactly the inverse of the mean ratio found here [44, 45]. This suggests
that faulted idands grow on stepped surfaces, in accordance with the study of Camarero et d [43].
For idandson Ag(111) the fitting procedure described above does not render a significant result on
the fraction of faulted idands since the histograms centers practicaly around ra/rg = 1. A fit with a

fraction of faulted idands p= 0.5 fits just as well as p= 0 (solid and dashed lines in Fig. 4b,

respectively).

By averaging over dl results, taking the number of images, the different pixel resolutions, and the

number of idands into account we obtain

Cu(11l): b, /bg =1011+0.007 1)

Ag(111): b, /bg = 0996+ 00025 2)

As remarked above, the ratio of the free energies may depend on temperature. However, no
sgnificant temperature dependence of the ratio ba/bg was observed. A temperature dependence

mostly arises from the contribution of step phonons to the free step energy and amounts to a few
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meV at 300K [46-48], where the step free energy is alinear function of temperature. The dopes are

calculated to be 0.022 and 0.00069 meV/(atom K) for A- and the B-steps, respectively. Since the
step energy is about 0.3 eV/atom (see section 5), theory would predict the ratio of the free energies
ba/bg to vary by about -0.005 for a temperature difference of 100 K. This smdl variation is not

detectable.

In contrast to the ratio ba/bg. the ratios of the free energies for the 100% kinked steps (dlong the
{001)- and the (112) -directions for the (100)- and the (111)-surface, respectively) to the energies
of the densdly packed directions depend significantly on the temperature. Thisis reflected in the ratio
of the radii pointing to the "corners’ of the idands and the "straght” sections tse/ree and e/foe,

respectively. These ratios are denoted as the aspect ratios of the
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Fig.5: Aspect ratio of islands on Cu(100)-, Cu(111)-, and Ag(111)-surfaces as a function of temperature. Data
points on Cu(111) include earlier results published in [45] (filled triangles) as well as new results (open triangles).

The solid lines are fits to the theory described in sections 6 and 7.
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idands in the following. Because of the smdl difference in the radii of A-steps (ro-) and B-steps (reo-),

we teke the average aspect ratio 2r/(r- + Ioe). IN Fig. 5, the aspect ratios are plotted vs.

temperature for the three types of idands investigated in this paper.

The data for Cu(111) include the data points obtained with idands on (incidentaly larger) terraces of
vicna surfaces published earlier in [45] (filled triangles), but extend to lower and higher
temperatures. For al surfaces, the ratio decreases monotonicaly with temperature. The temperature

dependence is mostly due to the configurationd entropy of kinked steps (section 5).

The dependence of the step free energy on the orientation can be obtained from the equilibrium
shape of theidands usng an "inversg” Wulff-congtruction. Two such inverse Wulff-congructions are
possible. One, which indeed congructs (the inverse of) the free energy as the minima surface of the
Wulff-congtruction to the shape of 1/r(q) [8]. For the two-dimensonad case, another form of an
inverse Wulff-condruction is more convenient as it immediately lends itsdf to programming a
computer code: For agiven ray projecting from the origin of the equilibrium shape in the angle g, one
searches for the perpendicular which is a tangent to the equilibrium shagpe. The distance of the
tangent from the origin is proportiond to the step free energy. This form of the inverson is possble
since two-dimensional idands have no facets for T > 0. In other words, the (at low temperatures)
seemingly "straight” sections are aways curved. The absence of facets in two-dimensiona idands
means that the step free energy has no cusp in the orientation of dense packing. In Fig. 6a-c, the free
energies obtained from the equilibrium shapes are plotted as a function of the angle for Cu(100),
Cu(111) and Ag(111) for two temperatures each. Because of the absence of cusps, the lowest term
in a power law fit to the free energy function is a term proportiona to o In a reduced form

gpplicable to the plotsin Fig. 6, this power law reads
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Fig.6: Variation of the step free energy b as afunction of the angle q for Cu(100), Cu(111), and Ag(111). For the
(111)-surfaces, the variation is shown with reference to the step which has the largest free energy. The total
variation with the angle reduces as the temperature increases, corresponding to the fact that the islands assume

more and more acircular form at higher T.
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b(q) ba 4
b(0) 1+ 200 " (). 3

As seen from Fig. 6, the second derivative b" at g = 0 decreases with risng temperatures. By
referring to a set of well known relations it can be shown that the energy for the formation of kinksin
a draight step can be obtained from a suitable Arrhenius type plot of b". This will be discussed in
section 5. Because of the uncertainties introduced by the inverse Wulff-congtruction, the kink energy

is better extracted from the curvature of the equilibrium shape directly (sections 5 and 7).

4. 1sng-models

Analytical expressions for the equilibrium shapes of 2D-idands on a square and honeycomb lattice as
afunction of temperature are available for the Isng-modd [3, 49, 50]. In this modd, the energy of a
sep is proportiond to its microscopic length. For the square lattice, this means that the energy per
atom of the densdy packed step and the kink energy are equa. On the honeycomb lattice
(henceforth named "hexagond™), the energy per atom of the densaly packed step istwice as large as

the kink energy (Fig. 7).

(a) (b)

1]

Fig. 7: Plottoillustrate the energeticsin the Ising-model for islands (@) on the (100)-surface and (b) on the (111)-
surface. The energies of the steps are proportional to the number of length units. Hence, on the (100)-surface, the
kink energy is equal to the step energy per atom whereas on the (111)-surface, the kink energy is half the step

energy per atom.
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In the following, we denote the energy parameter in the Ising-model which corresponds to the kink

energy as e. The equilibrium shapes are given by the implicit expressions [ 3, 49, 50]

coshle(x - y) /2kgT] cosh[e(x+y)/ 2kgT| = Ay, (4)
with
1
Ag =5 cosh(e/ ke T)coth(e/ kgT) )

for the square lattice, and

cosh(2ye/ kg T) +cosh((v/3x +y)e/ kgT) +cosh((+/3x- y)e/kgT) =A e, (6)
with

_cosh®(2K”) +sinh®(2K")
hex sinh(2K”)

(7)
tanh(K*) = exp(- 2e/ kgT)

for the hexagond lattice. For moderately low temperatures, i.e, in the limit exp(-e/kgT) << 1, the

right-hand sides of egs. (5) and (7) can be approximated by

1
Asq :Zee/kBT (8)
A _leZe/kBT (9)
hex — 2 '

The coordinates are chosen such that for both lattices the nearly straight sections at low temperature
are oriented paralld to the x-axis. The scding of the cartesian coordinates is so that y(x=0) = £1in
the limit exp(-e/ksT) << 1, and that the sze of the idands described by egs. (4-9) remains

approximately congtant with temperature. In the following, we write down some relaions for the
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Ising-shapes concerning theradiusat g = 0, i. e y(x=0), the curvature y"(x=0) and the aspect ratio

in a firs order gpproximation in exp(-e/ksT). The reations represent specid forms of generd
relations, which are conddered in sections 5 and 6 in greater detail. The main purpose of the
discussion of these rdlaions for the ISng-model isto show to what extent afirst order approximation
inexp(-e/ks T) can be used to andyze experimentd data. With dl termsto first order in exp(-e/ksT)

included, one obtains from egs. (4)-(7) for y(x=0)

2kgT

Ysq(x=0) =1- =2 e/keT (10)
kgT .

Ynex(x=0) =1- —2=e"€keT (1)

These digances of the densdy packed, dtraight sections of the perimeter to the center are

proportiond to the free energies. *

The curvature in the nearly sraight sections are

yg(x =0) @—kie.r e e/keT (12)
_ 3 _e/kgT
Yt (x=0) @ﬁe B (13)
B

Egs. (10)-(13) depend on the scaling of the coordinates in egs. (4) and (6). The products

2keT A
yy Sq’xzokBT@Qee'e/kBTgi_ TBe-e/kBT%@ee-e/kBT (14)

' The free energy per atom ab(T) of a densely packed step to linear order in exp(-gksT) is
qyb(T) =gyb(T =0)- 2kgTe e/keT The factor of two difference in the temperature dependent terms in

eg. (10) and (11) is because of the factor of two difference in the step energy for the square and the hexagonal
Ising-lattice (g b(0)y; = & & b(O)hex = 26).
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- kKeT . o) )
yyath@(’X:OkBT @Bee e/kBTg‘L_ %e e/kBTB@gee elkgT

(15)

are, however, independent of the scaling. The aspect ratios, rase/fo- and rage/roe, respectively, are

!

I'30°
r0°

< ol

In2 0 ZkBT - elk Tb
- = - —_— B' =
e kBTﬂlgi e © '}

2x In2 6 KeT ek,

(16)

(17)

The leading terms for the temperature dependencies are the linear terms in the first parentheses. The

denominators on the right-hand sdes of egs. (16) and (17) are proportional

1.6 T T y T
Ising-model for square and hexagonal lattice
—————— Approximations to first order in e @D
o O numerical solution square lattice
S} Lars ) A numerical solution hexagonal lattice 1
e
©
| .
O
ber) 1.2 ]
o
)
<
1.0 F ‘ | .
1 L 1 L
0.0 0.2 0.4 0.6

k T/e

Fig. 8: Comparison of the first order approximation in exp(-&kgT) on the aspect ratio to the Ising-model (egs.

(16) and (17)) to the numericaly calculated exact Ising result (squares and triangles, respectively). The
approximation agrees well with the exact result up to about kT = €/2.

to the free energies of the straight steps. The range of vaidity of the approximation can be tested by
comparison with the exact (numerica) solution of the Isng-shape (Fig. 8). The gpproximation agrees

well with the exact result up to kT = 0.4 e and 0.5 e, for the square and hexagond lattice,
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respectively. This condition corresponds to temperatures of 700K, 680K, and 580K for Cu(100),

Cu(111) and Ag(111), respectively. Higher order corrections to egs. (10)-(13) of the order (exp(-
e/ksT))? can be neglected as long as one uses lower temperatures which is the case, with a good

safety margin.

5. Analysis of the minimum curvature

The chemicd potentid of the curved step of an idand in equilibrium is condant dong the perimeter

by definition. At any point of the perimeter the chemica potentid is[51]
m(F) = Wh (F)k(F), (18)

with k(T) theloca curvature and W the area per atom; 5(?) is the dtiffness of the step describing

the work per length necessary to elongate the microscopicaly meandering step on acoarse grained
scade. The giffness depends on the step orientation q and is related to the free energy b(q) (= "line

tensgon™) by [52]

2
_ b
mm:um+%é?. 19)

The minimum curvature of the perimeter isat g = 0 (x = 0) and eg. (18) becomes there:
m= gy a t~>(q =0)yd(x=0). (20

The atomic area W is expressed now in terms of g and a. , the aomic length units paralel and

perpendicular to the step oriented aong the direction of dense packing (hence, a. =g and

an = %ﬁ 3y on the (100)- and (111)- surface, respectively). The chemical potential of anidand is
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the derivetive of the free energy with respect to the number of particles in the idand. By using this

definition, one derives for the square and the hexagond latticea T =0

b(q=0)
y(x=0)"

rT(T = O) = a"a/\ (21)

For idands on a (111)-surface with different energies for the A- and B-steps, one obtains the same
result with b/y replaced by balya = bglys. In the limit of high temperaures, the idands assume a
circular shape and be b. Rdation (21) therefore holds dso in the limit of high temperatures since
eq. (21) is then identicad to eg. (18). Possble temperature corrections in the intermediate
temperature range are not known, to the best of our knowledge. We can safely assume that they are
at most of the order exp(-ex/ksT) and can therefore be neglected around, and moderately above
room temperature. Combining egs. (21) and (20) yidds the remarkably smple relation between

shape coordinates of idands and energy parametersat x =0, g = 0.
yyab =b 22)

The diffressb  of a gep, with a mean orientation dong the direction of dense packing (@ = 0), is

related to the diffusvity b” of astep via (for thisand egs. (24) and (25) see, e. g., [53])

a." kBT
b2

=b. (23)
The diffusivity of astep is defined by the mean square displacement x of astep

0. () = ([x) - xOF ) =0?(T) y/ 3. (24

For not too high temperatures (terms involving exp(-2ex/ksT) neglected), the diffusvity can be

expressed in terms of the kink energy ey as
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b? @aZe /KeT  p?<<a?. (25)
By combining egs. (22), (23), and (25), one obtainsfor x =0, q = 0°:

2a - e /kgT
yy(lthT:a"b?e k’%B (26)

Eq. (26) offers the interesting possibility to determine the kink energy ey from an Arrhenius plot of
yy'T. The pre-exponentid factor is the step energy per atom, a;b(q = 0°). Eq. (26) is the generd
form of egs. (14) and (15) previoudy derived for the Isng-modd, now for arbitrary interactions
between the atoms. To the best of our knowledge eg. (26) has not been considered so far, certainly
not been used to analyze data. Before we enter the discussion of the experimenta results in terms of
€g. (26), we mention an dternative way to anayze the experimenta data by referring to the inverse

WuIff plot. By using egs. (19), (23), and (25) one obtains

2
ar kgT
1+@:"2—Beek’kBT. 27)
b 2ax (ab)
Theratio b"/b can be obtained from the experimental data with the help of the inverse Wuff-
congruction (eg. (3)). Again the kink and the step energy can be determined from an Arrhenius plot.
Sincetheuseof eg. (27) basicaly involves the same experimenta data on the equilibrium shape, but

is subject to errors in the process of the inverse Wulff-congruction, the direct andysis of yy'T (eg.

(26)) is preferred.
6. Theory of the aspect ratio

The theoreticd consderations of this section have partly dready been presented in a previous |etter
publication [45]. Here, we firs make contact to the results of the lsng-modd and furthermore

present and extended discusson of the theoreticd implications and a generdization of the theory.
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Within the Ising-model, the aspect ratios of square and hexagonal idands are related to the Isng

energy (eg. (16) and (17)). By making reference to the relations between the Ising parameter and the
sep energy for one atom length (which is gb(gq = 0°, T=0) = e for the square lattice, however
ab(q =0°,T =0) = 2e for the hexagond lattice), one may cast egs. (16) and (17) into a common

form

In2
1- kBT
=0, T b(ql,.0 b(00
st =AM @ty ) e )_e,kBT- 28)
" ab(00)

Here, g« denotes the angle of the 100% kinked step. The fact that the aspect ratio of Isng idands
has the same andyticd form for the square and the hexagona |attice raises the interesting question as
to whether the rdation dso holds for non-1sing systems. In the following, we show that an equation
equivaent to eg. (28) can indeed be derived with an assumption which is far less redrictive than the

assumptions in the I1ing-moded!.

For the Isng-modd and aso for idands on the (100)-surface the aspect ratio A(T) is equd to the
ratio of the free energies of the 100% kinked step and the step with no structura kinks at g = 0°.
For idands on the (111)-surface this holds only if the energies for A- and B-steps are equal. For the
moment, we assume that this is so0. However, the consderations to follow can easly be generdized
to idands with different energies for A- and B-step. The free energy of the step oriented aong the
densdy packed direction can be cadculated straightforwardly from the partition function per atom

length of this step which is (to second! order in exp(-ew/ksT))

Z=1+2¢ &c/keT (29)
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The factor of two arises from the posshbility to create kinks of oppodte sign. The free energy per

aom length g,b (T) is therefore

_ _ _ aZ KT o i, 70
AP(T) = 4p(T =0)- keTinZ = 4p(T = Ol e = (3

With this equation, we have recovered the denominator in eg. (28) which, therefore, has the same

form aso for general systems. Its temperature dependence arises from the energy

Fig. 9 N=10 length units of the 100% kinked steps (solid lines) for the (a) square lattice and (b) hexagonal
|attice. The orientation is along the {100)- and (11?) -direction, respectively. The ensemble of dashed lines
represent paths which have the same microscopic length and therefore nearly the same energy. (c) Structure of a
(11?) -oriented step (solid line) on a (111)-surface. In the macroscopic limit, only configurations which

correspond to adding the dashed atom or removing a kink atom from the step contribute to the free energy.
Coordination numbers C are indicated for three edge atoms (C=7 iswith the added atom).
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associated with the creetion of kinks in the straight steps. With the energies of the specific step

inserted, eq.(30) isvalid for A- and B-steps. The linear temperature dependence of the numerator in
€g. (28) means that the temperature dependence of the free energy of the 100% kinked step is due
to an entropy term. This entropy arises from the various configurations of the steps which dl have a
mean orientation along the direction of the 100% kinked step and are energeticaly equivadent in the

Isng-modd. These various paths areillustrated in Fig. 9aand b, for the square and hexagond lattice,

repectively.

The configurationa entropy is calculated easily by making contact with theory [54]: The number of
possihilities in a coin tossng game with N trids to arrive & N/2 "head" and N/2 "td€" reallts is

N!/[(N/2)!]?. Thus one has

!
S= kBInLZ, (31)
[(N/2)1]
which by virtue of Stirling's formula becomesin the macrascopic limit (N® ¥)
S=NkgIn2. (32)

Hence, the entropy per atom on the kinked step is kg In 2 and the partition function per atom is Z=2.
This means that in the macroscopic limit only two dternative paths per atom survive. Those are the
ones which stick closest to the center path and correspond to adding or removing one atom to the
gep as illugrated in Fig. 9c. All other paths have a Satistical weight lower then € and vanish
therefore in the macroscopic limit. With the entropy €g. (32)), the free energy per atom for the

100% kinked step becomes

ayb(ay,T) =acb(qy, T=0)- kgT In2. (33
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Here, a denotes the length per atom of the kinked step which is ar|/«/§ and g,/3/2 for the square

and hexagond lattice, respectively. By usng egs. (33) and (30), we cdculate for the ratio of the free

energies of the 100% kinked step and the "straight” step

gIn2
a"b(qk ,0) - a— kBT

ap(qy.T)
= g (34)
ap(0,T) & 2kgT ek/kBT9
PO 200 "5
Thisequation is equivdent to eg. (28) since
8 _ b0
a, b(00) (35)

(cf. ds0 Fg. 7). We now relax the condition which is specific for the 1sng-modd, namdy that the
energies of al paths depicted in Fig. 9ab are equa, and we make dlowance for a (smal) energy
difference DE, between the two paths next to the center path (corresponding to adding or removing

one gtep atom, Fig. 9¢). The partition function per atom is then

Z =2cosh(DE, / 2k T @221 1 DBy t-"2+1aEDE 94 ﬂ 36
(DE, /2ksT) é T &k T M E2KTE R (36)

The additiond terms can be ignored as long as (DE,, /2kB'|')2 << 1. If that condition is not fulfilled,

the absolute vaue of the partition function is affected by DE, and becomes temperature dependent.
Whether or not the partition function of the kinked step is only entropic can therefore be checked by

plotting the left-hand sde of

qp(qy.T)&  2kgT . e ks 70 _ D@0 @InZ(T)

ab(0.T) & ap(00) 5 b(00) a ap(0,0) kel (37)
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vs. temperature. The deviaion from a graight line is then due to the temperature dependence of the

partition function. The three unknown parametersin eq. (37), which are b(0,0), DE,, and the ratio
b (g«,0)/b(0,0), can be determined from a self consstent fit of the temperature dependence of the
experimentd ratio of the free energies b (g, T)/b (O, T). This fit requires that the data have a sufficient

low noise and extend over a sufficiently wide temperature range.

7. Analysis of the experimental data

7.1 Finite size effects

The Isng-mode as well as the more generd theory for the aspect ratio presented in the preceding
section refer to the idand shape in the macroscopic limit. For a meaningful theoreticd andysis of
experimenta equilibrium shapes of idands, one needs to know beyond which sze it is legitimate to
assume that errors due to the finite Size of theidands are small. We address the issue from two sides,
(i) by measuring the aspect ratio of idands as a function of sze and, (ii) by estimating finite Sze
correctionsto eqg. (32). Different idand sizes were obtained by depositing materid at different rates
and sample temperatures. Idands szes differing by about three orders of magnitude in area were
thereby obtained. However, the smallest idands preferentialy obtained at low temperatures cannot
be measured at high temperatures since they decay too quickly. For a given temperature we have
therefore only a range of about 25 in area, respectively 5 in the linear dimenson available. As an
example, the aspect ratio of idands on the Ag(111)-surface is plotted versus the idand radius rzo- in
Fig. 10a. The error barsin Fig. 10a are estimated from the pixel resolution and the number of idands
in the ensemble. As this latter number varies congderably, the error bars differ for each lot and are
larger for the smdler data sets on small idands. In Fig. 10b the aspect ratio of idands is plotted

versus the full range of sSzesinvestigated which ranges from 500 to
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Fig. 10:(a) Aspect ratio of islands vs. the radius rs- for Ag(111) for two different temperatures (large triangles and
circles). The thick dashed and solid lines represent the mean values of the aspect ratio. The thin dashed and solid
lines connecting the small symbols are a simple estimate for the finite size effect in the aspect ratio as described in
the text. (b) Aspect ratio of islands in awider range of sizes normalized to the mean aspect ratio obtained for large

islands (full curvein Fig. 5). (c) Sketch to illustrate the length |, of the 100% kinked step (see text).
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200 000 atoms (afactor of 20 in radius). In order to be able to compare measurements at different

temperatures the aspect ratios are normalized to the mean aspect ratio (full linein Fig. 5). The datain
Fig. 5 were dways obtained with largest idands at a given temperature. A finite Sze effect would
therefore be gpparent in Fig. 10b by a deviation of the aspect ratio for the smdler idands for each
temperature. The data display no finite size effect, not even in the set obtained at 286 K with radii
between 12 and 37 atoms (open squares in Fig. 10b). This result came somewhat unexpected to us
asit is a variance with a smple modd that one may consider for a theoretical estimate on the finite

gze effect.

The assumption that the idand Sze be large is explicitly made with the use of the Strling
gpproximation for eq. (31), and it is presumably there where the assumption of infinite size should
enter mogt significantly. For idands of finite Sze, the number of atoms in the 100% kinked step
denoted as N is no longer infinite and the partition function per step aom becomes smdler for smal
idands, and the aspect ratio becomes larger. If one denotes the change in the partition function due
to the finite Sze as DZ(r), with DZ(r) being a yet to be determined function of the idand radius, the

change in the agpect ratio is gpproximately (eg. (34))

4 DZ(r) kgT

D(r(ag) /1(0°)) @ a—kW (38)

The relation between the change in the partition function and the Sze of the idands is estimated in the
following way: The tangent to the 100% kinked step intersects the shape of an ideal hexagon after a
length Iy = 2ro-(1-rs0-~/3/2r¢) (Fig. 10c). We assume that a reasonable value for the number of
atoms in the 100% kinked step N is given by the length of that tangent, N= 2l,/a.. DZ(r) is then
caculated from the difference between the partition function for N= 2l/a and N= ¥ . The finite

Size corrections according to that modd are plotted in Fig. 10a as the smdl open and filled triangles
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connected by athin dashed and solid line, for the two temperatures respectively. Comparison to the

experimenta data suggests that the model overestimates the finite Size effect grosdy. Recent Monte-
Carlo cdculations support this view [55]. In summary, we conclude that for the purpose of the
present study finite size effects can safely be neglected for idands containing more than about 5000
atoms. For a more precise determination of the effect of finite idand sizes on the aspect ratio and
other feature of the equilibrium shape, a detailed comparison of experimenta data to Monte-Carlo

simulations would be required, which is beyond the scope of the present paper.

7.2 Analysisusing thelsing shapes

A comparison between the Isng-modd and experimenta equilibrium shapes can be performed in
severd ways. The most sraightforward way is a least square fit to the overal shape with the Isng
energy e as the free parameter. An example to illustrate the qudity of such fitsis shown in Fg. 11.
The squares represent experimenta data on the equilibrium shape of Cu(100) idands at 400K. The
full line is the leest square fit of the Isng-shepe with the optimum vaue for the parameter
e =0.086 eV. The agreement is remarkably good. Nevertheless, the value of the parameter e such
obtained agrees neither with the kink energy, whichis e, = 0.128 €V [30], nor with the step energy,
which is a;b(0) @0.22eV (this work). The Isng-shape caculated with the experimentally known
kink energy e =e,=0.128¢€V, on the other hand, deviates dramaticdly from the measured
equilibrium shape (dashed linein Fig. 11). The main reason thet e is lower than both the kink and the

sep energy is that in the Isng-model, the ratios of the energies for the 100% kinked step and the

sraight step, and therefore the aspect ratios at T = 0O, are fixed to V2 and 2/+/3, for the sguare

and hexagonal
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Cu(100) 400 K

Experimental shape
Ising fit e= 0.086 eV
Ising fit e= 0.128 eV

Fig.11:  Comparison of the experimental equilibrium shape (circles) of Cu(100) at 400K to the Ising-model. The
best fit (full line) is obtained with e of 0.086 eV. Despite the good overal fit, the Ising energy e does not at all
agree with the kink energy .= 0.128 €V. Thelsing shape with e = g (dashed line) on the other hand, does not at
al agree with experiment. Neither the kink energy g nor the step energy a b can be extracted from afit to the | sing-

model. See text for further discussion.

|attice respectivey. In redlity, the ratios may differ sgnificantly from these numbers. For the Cu(100)-

surface, the ratio bus: / b is much smaller than /2 (Fig. 5, see dso section 7.3). The least square
overd| fit of an 1sng-shape to the experimenta data is most senstive to the aspect ratio and less
sengtive to the curvature a x = O which is directly related to the kink energy (eg. (26)). In the ISng-
modd, the only possihility to bring down the aspect ratio to the lower experimental value is via the
lineer taem in T in eq. (16) by choosing alow vaue for e, and hence, low values for e are obtained
by fitting with the ISng-modd. In Fig. 12 the 1sng-parameters obtained by fitting idand shapes a
various temperatures to the ISng-modd are displayed as a function of temperature The falure of the
Isng-modd is dso apparent from the temperature dependence of the Ising-parameter. For the
(112)-surfaces of Cu and Ag the Isng-modd works better: there, the mean vaue of the lsng
parameter e is close to the kink energy e, as determined from an Arrhenius plot of the curvature
(Figs. 12b, c). Asfar as one can tdl from the data, the 1sing-parameter remains to be temperature

dependent.
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Fig. 12:1sing-parameter e obtained from a least square fit to experimental equilibrium shapes of (a) Cu(100)-, (b)
Cu(111)- and (c) Ag(111)-islands. The dashed line represents the kink energy &. In the case of the Cu(100)-
surface, the value is obtained from the step position correlation function (=0.128+0.003 eV [30]). For the Cu(111)
and the Ag(111)-surface, the numbers are 0.117+0.006eV and 0.101+0.005eV, respectively, and are obtained from
the analysis of the curvature vs. temperature described in sections 5 and 7. For Cu(100), the |sing-parameter
deviates significantly from the kink energy, because the experimental aspect ratio is not well represented by the

Ising-model. For the (111)-surfaces, the I sing-parameter agrees reasonably well with the kink energy e. However,

the Ising-parameter remainsto be temperature dependent, asin the case of Cu(100).
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7.3 The minimum curvature

According to eg. (26), the minimum curvature in the nearly straight section, respectively the second
derivative y" of the equilibrium shape & q = 0°, can be used to determine the kink energy from an
Arrhenius plot of y(q = 0) y"(q = 0°) T. The second derivative was determined by fitting a parabola
centered at q = 0° (equivdent to x = 0) to the experimental data using afinite range of g - vaues.
We have andyzed the minimum curvature of the experimental idand shape data employing fitting
ranges Dq between £8° and +20°. Examples for Dg = £10° are shown in Fig. 13a-c for Cu(100),

Cu(111), and Ag(111), respectively.

Surface FittingrangeDq | Slope (eV)

Cu(100) +8° 0.1266+0.015
Cu(100) +9° 0.1400+0.017
Cu(100) +10° 0.1285+0.013
Cu(100) +15° 0.1014+0.006
Cu(111) +9° 0.1187+0.013
Cu(111) +10° 0.1106+0.011
Cu(111) +12.5° 0.1082+0.005
Cu(111) +15° 0.1007+0.006
Ag(111) +9° 0.0984+0.009
Ag(111) +10° 0.0991+0.007
Ag(111) +12.5° 0.0944+0.007
Ag(111) +15° 0.0898+0.005

Table 1: Slopes of Arrhenius plots of In(yy"T) according to eq. (26), with y* obtained from fitting a parabolato the
equilibrium shape around the position of minimum curvature. For the (111)-surfaces the mean value of the step

energy for A and B-stepsis used.

For the (111)-idands, the data represent an average over A- and B-gteps. The dopes of the
Arrhenius plots are listed in Table 1. While, for obvious reasons, the error decreases for larger fitting
ranges Dq, there is dso a trend towards smaller dopes for larger Dg. This is because fitting a
parabolato datain afinite range of angles overestimates the true curvature at g = 0. The error isthe

larger, the lower the temperature is. As a consequence, fitting to data points in too large a g- range
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resultsin alower dope of In(yy"T), and thus, in a lower gpparent kink energy. In order to minimize
the error introduced by the finite Dg we have used only dopes from fitting ranges up to 12.5°. In
Table 2 the mean vaues of the kink energies obtained for the fitting ranges Dg =8°, 9°, and 10° and
Dqg=9° 10°, and 12.5° are listed for Cu(100), Cu(111) and Ag(111), respectively. To estimate the
remaining effect of the finite angular fitting range, we have andyzed square and hexagond 1sng
shapes the same way as the experimenta data.

Surface e (eV) eq(corr.)

Cu(100) 0.131+0.009 | 0.129+0.009
Cu(111) 0.112+0.006 | 0.117+0.006
Ag(111) 0.097+0.005 | 0.101+0.005

Table 2: Kink energiesg, obtained from the Arrhenius plots of yy"T. Data in the first column represent the mean
obtained for the fitting ranges between +8° and £12.5°. The values are corrected for the finite angular fitting range
according to the Ising-model (see text). For the (111)-surfaces, the kink energies represent mean values for A- and
B-steps. The differencesin the kink energies for the A- and B-steps are small but noticeablein the case of Cu(111)
(seeFig. 14).

The temperature range was 290K to 420 K. To represent the idand shapes approximately, the I1sng
energy was chosen as 0.11 eV. With this result from the ISng-modd, the experimentd data obtained
with the finite fitting ranges were extrgpolated to Dg = 0°. The result of this extrgpolation is displayed

in the third column of Table 2 as ey(corr).

So far, the anadlysis assumed that the kink energies for A- and B-steps were equd. The curvatures
plotted in Fig. 13 b and ¢ are averages over A- and B-gteps. The kink energiesin Table 2 therefore
represent the mean kink energies for A- and B-geps. In addition to the mean vaue, one can adso
determine the ratio of the kink energies. For this purpose, eq. (26) is written for A- and B-steps
independently and the ratio of the kink energies is then determined from the individua curvatures for
A- and B-steps according to

e (A - step) _ IN(2y oy KT/ 3P, )
e (B- step)  In(2ygy@kT/3apg)

(39)
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Fig. 14: Ratio of kink energiesfor A- and B-steps on Cu(111) and Ag(111)

The reault is plotted in Fig. 14 for Cu(111) and Ag(111). For Ag(111), the ratio is 1.0 within the
error, consgstent with the nearly equa step energies for the A- and B-steps (see also the discussion
in section 3 on the possibility of faulted islands). For Cu(111), the ratio 0.94+0.014 deviates
from 1.0 and the deviation is outside the error. With the mean kink energy being 0.117 eV, the kink

energiesfor Cu(111) in A- and B-steps become
ex(A) =0.113+0.007 eV, e(B)=0.121+0.007 eV. (40)

We note that the error bars concern mainly the absolute value. The ratio of the two kink energiesis

accurate to about 1.5%.

7.4 Analysis of the aspect ratio

The measured aspect ratios (Fig. 5) are analyzed with the help of egs. (36) and (37). For Cu(111)

and Ag(111), the corrected mean kink energies from Table 2 were used, while for Cu(100), we



-37-
have inserted the more accurate vaue (ex = 0.128 +0.003 €V) obtained from the analyss of spatia

sep fluctuations [56]. The fits to the experimentd data in Fig. 5 were performed leaving the three
parametersin egs. (36, 37) b(0,0), b(gk,0) and DE, open. In dl cases, the optimum fit was obtained
with DE, = 0. The full linesin Fg. 5 represent the optimum fits. The energies per aom of the sraight
stepat T=0K, ab(0,0), and the ratios of the step energies of the 100% kinked step to the straight

step b(qgx,0)/ b(0,0) arelisted in Table 3.

Surface a;b (eV) b(q.)/b(0°) (eV)
Cu(100) 0.2240.02 1.24+0.01
Cu(111) 0.27+0.03 1.138+0.008
Ag(111) 0.25+0.03 1.136+0.009

Table 3: Step energies per atom gb(T=0) and ratio of step energies for the 100% kinked step to the energies of the
straight step. The error quoted is the sum of the errors obtained by fitting the aspect ratio with DE, set to zero and
the error in the determination of the kink energies (Table 2). For Cu(111) the valueislower by 0.04 eV compared to

the value published previously in [45]. In that first publication concerning the new method, the data set was

restricted to a smaller temperature range.

The errorsin Table 3 are the errors obtained from a two parameter fit with DE, set to zero with the

additiond error arising from the uncertainty in the determination of the kink energies added.

8. Discussion

In thisfind section, we discuss the usefulness of the various proposed methods for the andysis of the
equilibrium shapes and compare the numerical result to other experiments as wdl as to theory. We
begin with the andyss usng the ISng-modd. As shown in section 7.2, the Isng-model works quite
wdll for the (111)-surfaces and the I9ng parameters obtained from anayzing the equilibrium shapes
agree with the kink energies, experimental errors taken into account. The reason for this good

agreement is twofold. Firgly, for the hexagond 1sng-modd, the step energy per atom is twice the
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kink energy which isin very good agreement with the experimenta vaues (Table 2 and 3). Secondly,

idandsin the lIsng-modd have an aspect rtio of 2/4/3 = 1.155 at T= 0, which is again very close
to the experimentd results on Cu(111) and Ag(111) (Table 3). The Isng-modd is therefore useful
for a least a semi-quantitative analysis of idand shapes in cases where merdly aless complete set of
datais avaladle. An exampleisthe case of idands on Ag(111)-surface in contact with an eectrolyte
[57]. On (100)-surfaces on the other hand, the Isng andyss does not gppear to be hepful in
generdl. There, the 1sing-mode postulates a ratio of 1 between the kink and the step energy per
atom, which is far from redlity (Table 2 and 3). Likewise is the aspect ratio a T= 0 ill represented

by the Isng-modd.

As shown in sections 5 and 7.3, kink energies can be determined from an Arrhenius plot of the
minimum curvature ("MC-method"). The method competes with the determination of the kink energy
from the spatia correation between pairs of steps on vicina surfaces [31, 56, 58] (*SC-method").
As discussed in section 7.2, for Cu(100) the results obtained by the two methods agree within the
limits of error. The method introduced here requires a larger and aso a very accurate data set in a
wide temperature range. We have seen furthermore that it is difficult to obtain experimenta data on
the true minimum curvature and great care has to be exercised in the anadlyss. The results are
nevertheless inevitably less accurate than those obtained with the SC-method. Insofar, the SC-
method is first choice. Under certain, not so infrequently encountered circumstances, however, the
MC-method has specific advantages. On the Cu(111)-surface, e. g., vicind surfaces with B-steps
are undable [44]. Furthermore, the step corrdation function may be dominated by the time
fluctuations of the seps. The condition that the steps are in equilibrium on the one hand while the
motion of kinks is dow enough, on the other, is met (if a dl) only in a very narrow temperature
window [31, 56]. For Cu(111) and Ag(111), this window must be below 300 K (if it does exist at

al). A previous andysis of the step corrdation function on Ag(111) at 300 K [59] did not take into
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account that at 300 K the step postion correlation function is dominated by the time structure and

the value for the kink energy obtained in this study (0.073 eV) istherefore too low.

The kink energies obtained with the method proposed here agree reasonably well with theory.
Here, we focus on the comparison to a recent first principles (GGA) study on Cu(111) steps by
Feibeman [60]. For a comparison to the results of other, non first principles methods see [61]. For
Cu(111), Feibelman finds energies of 0.092 and 0.117 €V for kinks in the A- and B-steps,
repectively. The mean vaue is about 11% lower than the experimental mean vaue of 0.117 eV
which is outsde our estimated experimenta error, but not enough outsde the error to state a
disagreement. Theory and experiment agree in that the energy of the kinks in the A-geps are
smdler. What disagrees is the ratio of kink energies ea/eg for which theory finds 0.79 to be
compared to the experimental vaue of 0.94+0.014. As for the step energies, the caculated
absolute vaue for the step energy per atom 0.27 €V for the A-step and 0.26 eV for the B-step
[60] isin perfect agreement with our present experiment. Whereas theory calculates the energy of
the A-step 4% higher than the energy of the B-step, the experiment has the difference at 1%. Both,
theory and experiments are internaly consstent insofar as the steps with the higher energies have
kinks (which condtitute a segment of the other type of step) with the lower energies, and vice versa.
Using the "awning gpproximation” Nelson et d. derived certain relations between kink and step
energies [62]. In a recent publication Feibeman [63] extended these considerations to include
"corner energies’. Under the assumption that corner energies are equa for kinksin A- and B-steps
(or vanish al together, whereby the model becomes equivaent to the "awning gpproximation™) the
difference in the energies of the A- and the B-step are 2/3 of the difference between the kink
energies in the B- and the A-gtep. Congdering the errors, this relation is fulfilled, both by theory

and experiment.
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The step energy for Cu(111) has aso been determined experimentadly from the shape fluctuations of

idands [32]. A step (free) energy per atom of gb =0.22 +0.02 eV was found. This number
represents the angle averaged step free energy at the temperature of measurement (around 330 K).
According to Fig. 6b, averaging over dl angles makes the step free energy about 3.5% higher than
the free energy of the densdy packed step. Thus, the value quoted should be an upper bound as
gated in [32]. The difference is however margind. More significant for the comparison to the number
obtained is the fact that the free energy at 330 K is lower than the energy & T = 0 (which is
determined here) due to the contribution of phonons. According to [46, 48, 64], the phonon
contribution to the step free energy is about 0.01 eV and would therefore do little more than
compensating the contribution from averaging over the angle. The vaue derived from the idand
fluctuations is thus definitely lower than the vaue obtained here dthough the difference is not outside

the sum of the errors in both experiments.
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